Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Enantioselective transport and biotransformation of chiral hydroxylated metabolites of polychlorinated biphenyls in whole poplar plants.

Identifieur interne : 002255 ( Main/Exploration ); précédent : 002254; suivant : 002256

Enantioselective transport and biotransformation of chiral hydroxylated metabolites of polychlorinated biphenyls in whole poplar plants.

Auteurs : Guangshu Zhai [États-Unis] ; Sarah M. Gutowski ; Hans-Joachim Lehmler ; Jerald L. Schnoor

Source :

RBID : pubmed:25238141

Descripteurs français

English descriptors

Abstract

Hydroxylated metabolites of polychlorinated biphenyls (OH-PCBs) have been found to be ubiquitous in the environment due to the oxidative metabolism of their parent PCBs. With more polarity, OH-PCBs may be more toxic and mobile than their parent compounds. However, the behavior and fate of OH-PCBs have been neglected in the environment because they are not the original contaminants. Some of these hydroxylated metabolites are chiral, and chiral compounds can be used to probe biological metabolic processes. Therefore, chiral OH-PCBs were selected to study their uptake, translocation, transformation, and enantioselectivity in plants in this work. Poplars (Populus deltoides × nigra, DN34), a model plant with complete genomic sequence, were hydroponically exposed to 5-hydroxy-2,2',3,4',6-pentachlorobiphenyl (5-OH-PCB91) and 5-hydroxy-2,2',3,5',6-pentachlorobiphenyl (5-OH-PCB95) for 10 days. Chiral 5-OH-PCB91 and 5-OH-PCB95 were clearly shown to be sorbed, taken up, and translocated in whole poplars, and they were detected in various tissues of whole poplars. However, the enantioselectivity of poplar for 5-OH-PCB91 and 5-OH-PCB95 proved to be quite different. The second-eluting enantiomer of OH-PCB95, separated on a chiral column (Phenomenex Lux Cellulose-1), was enantioselectively removed in whole poplar. Enantiomeric fractions in the middle xylem, top bark, top xylem, and stem, reached 0.803 ± 0.022, 0.643 ± 0.110, 0.835 ± 0.087, and 0.830 ± 0.029, respectively. Therefore, 5-OH-PCB95 was significantly enantioselectively biotransformed inside poplar tissues, in contrast to nearly racemic mixtures of 5-OH-PCB95 remaining in hydroponic solutions. Unlike 5-OH-PCB95, 5-OH-PCB91 remained nearly racemic in most tissues of whole poplars during 10 day exposure, suggesting the enantiomers of 5-OH-PCB91 were equally transported and metabolized in whole poplars. This is the first evidence of enantioselectivity of chiral OH-PCBs and suggests that poplars can enantioselectively biotransform at least one chiral OH-PCB: namely, 5-OH-PCB95.

DOI: 10.1021/es503443e
PubMed: 25238141
PubMed Central: PMC4207536


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Enantioselective transport and biotransformation of chiral hydroxylated metabolites of polychlorinated biphenyls in whole poplar plants.</title>
<author>
<name sortKey="Zhai, Guangshu" sort="Zhai, Guangshu" uniqKey="Zhai G" first="Guangshu" last="Zhai">Guangshu Zhai</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Civil and Environmental Engineering and IIHR Hydroscience and Engineering, The University of Iowa , Iowa City, Iowa 52242, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Civil and Environmental Engineering and IIHR Hydroscience and Engineering, The University of Iowa , Iowa City, Iowa 52242</wicri:regionArea>
<wicri:noRegion>Iowa 52242</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gutowski, Sarah M" sort="Gutowski, Sarah M" uniqKey="Gutowski S" first="Sarah M" last="Gutowski">Sarah M. Gutowski</name>
</author>
<author>
<name sortKey="Lehmler, Hans Joachim" sort="Lehmler, Hans Joachim" uniqKey="Lehmler H" first="Hans-Joachim" last="Lehmler">Hans-Joachim Lehmler</name>
</author>
<author>
<name sortKey="Schnoor, Jerald L" sort="Schnoor, Jerald L" uniqKey="Schnoor J" first="Jerald L" last="Schnoor">Jerald L. Schnoor</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25238141</idno>
<idno type="pmid">25238141</idno>
<idno type="doi">10.1021/es503443e</idno>
<idno type="pmc">PMC4207536</idno>
<idno type="wicri:Area/Main/Corpus">001F96</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001F96</idno>
<idno type="wicri:Area/Main/Curation">001F96</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001F96</idno>
<idno type="wicri:Area/Main/Exploration">001F96</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Enantioselective transport and biotransformation of chiral hydroxylated metabolites of polychlorinated biphenyls in whole poplar plants.</title>
<author>
<name sortKey="Zhai, Guangshu" sort="Zhai, Guangshu" uniqKey="Zhai G" first="Guangshu" last="Zhai">Guangshu Zhai</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Civil and Environmental Engineering and IIHR Hydroscience and Engineering, The University of Iowa , Iowa City, Iowa 52242, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Civil and Environmental Engineering and IIHR Hydroscience and Engineering, The University of Iowa , Iowa City, Iowa 52242</wicri:regionArea>
<wicri:noRegion>Iowa 52242</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gutowski, Sarah M" sort="Gutowski, Sarah M" uniqKey="Gutowski S" first="Sarah M" last="Gutowski">Sarah M. Gutowski</name>
</author>
<author>
<name sortKey="Lehmler, Hans Joachim" sort="Lehmler, Hans Joachim" uniqKey="Lehmler H" first="Hans-Joachim" last="Lehmler">Hans-Joachim Lehmler</name>
</author>
<author>
<name sortKey="Schnoor, Jerald L" sort="Schnoor, Jerald L" uniqKey="Schnoor J" first="Jerald L" last="Schnoor">Jerald L. Schnoor</name>
</author>
</analytic>
<series>
<title level="j">Environmental science & technology</title>
<idno type="eISSN">1520-5851</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biodegradation, Environmental (MeSH)</term>
<term>Biological Transport (MeSH)</term>
<term>Biotransformation (MeSH)</term>
<term>Hydroponics (MeSH)</term>
<term>Hydroxylation (MeSH)</term>
<term>Plant Stems (MeSH)</term>
<term>Plant Transpiration (drug effects)</term>
<term>Polychlorinated Biphenyls (metabolism)</term>
<term>Polychlorinated Biphenyls (toxicity)</term>
<term>Populus (drug effects)</term>
<term>Populus (metabolism)</term>
<term>Stereoisomerism (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Biotransformation (MeSH)</term>
<term>Culture hydroponique (MeSH)</term>
<term>Dépollution biologique de l'environnement (MeSH)</term>
<term>Hydroxylation (MeSH)</term>
<term>Polychlorobiphényles (métabolisme)</term>
<term>Polychlorobiphényles (toxicité)</term>
<term>Populus (effets des médicaments et des substances chimiques)</term>
<term>Populus (métabolisme)</term>
<term>Stéréoisomérie (MeSH)</term>
<term>Tiges de plante (MeSH)</term>
<term>Transpiration des plantes (effets des médicaments et des substances chimiques)</term>
<term>Transport biologique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Polychlorinated Biphenyls</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Plant Transpiration</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Populus</term>
<term>Transpiration des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Polychlorobiphényles</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Polychlorinated Biphenyls</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicité" xml:lang="fr">
<term>Polychlorobiphényles</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
<term>Biological Transport</term>
<term>Biotransformation</term>
<term>Hydroponics</term>
<term>Hydroxylation</term>
<term>Plant Stems</term>
<term>Stereoisomerism</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biotransformation</term>
<term>Culture hydroponique</term>
<term>Dépollution biologique de l'environnement</term>
<term>Hydroxylation</term>
<term>Stéréoisomérie</term>
<term>Tiges de plante</term>
<term>Transport biologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Hydroxylated metabolites of polychlorinated biphenyls (OH-PCBs) have been found to be ubiquitous in the environment due to the oxidative metabolism of their parent PCBs. With more polarity, OH-PCBs may be more toxic and mobile than their parent compounds. However, the behavior and fate of OH-PCBs have been neglected in the environment because they are not the original contaminants. Some of these hydroxylated metabolites are chiral, and chiral compounds can be used to probe biological metabolic processes. Therefore, chiral OH-PCBs were selected to study their uptake, translocation, transformation, and enantioselectivity in plants in this work. Poplars (Populus deltoides × nigra, DN34), a model plant with complete genomic sequence, were hydroponically exposed to 5-hydroxy-2,2',3,4',6-pentachlorobiphenyl (5-OH-PCB91) and 5-hydroxy-2,2',3,5',6-pentachlorobiphenyl (5-OH-PCB95) for 10 days. Chiral 5-OH-PCB91 and 5-OH-PCB95 were clearly shown to be sorbed, taken up, and translocated in whole poplars, and they were detected in various tissues of whole poplars. However, the enantioselectivity of poplar for 5-OH-PCB91 and 5-OH-PCB95 proved to be quite different. The second-eluting enantiomer of OH-PCB95, separated on a chiral column (Phenomenex Lux Cellulose-1), was enantioselectively removed in whole poplar. Enantiomeric fractions in the middle xylem, top bark, top xylem, and stem, reached 0.803 ± 0.022, 0.643 ± 0.110, 0.835 ± 0.087, and 0.830 ± 0.029, respectively. Therefore, 5-OH-PCB95 was significantly enantioselectively biotransformed inside poplar tissues, in contrast to nearly racemic mixtures of 5-OH-PCB95 remaining in hydroponic solutions. Unlike 5-OH-PCB95, 5-OH-PCB91 remained nearly racemic in most tissues of whole poplars during 10 day exposure, suggesting the enantiomers of 5-OH-PCB91 were equally transported and metabolized in whole poplars. This is the first evidence of enantioselectivity of chiral OH-PCBs and suggests that poplars can enantioselectively biotransform at least one chiral OH-PCB: namely, 5-OH-PCB95. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">25238141</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>12</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1520-5851</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>48</Volume>
<Issue>20</Issue>
<PubDate>
<Year>2014</Year>
<Month>Oct</Month>
<Day>21</Day>
</PubDate>
</JournalIssue>
<Title>Environmental science & technology</Title>
<ISOAbbreviation>Environ Sci Technol</ISOAbbreviation>
</Journal>
<ArticleTitle>Enantioselective transport and biotransformation of chiral hydroxylated metabolites of polychlorinated biphenyls in whole poplar plants.</ArticleTitle>
<Pagination>
<MedlinePgn>12213-20</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/es503443e</ELocationID>
<Abstract>
<AbstractText>Hydroxylated metabolites of polychlorinated biphenyls (OH-PCBs) have been found to be ubiquitous in the environment due to the oxidative metabolism of their parent PCBs. With more polarity, OH-PCBs may be more toxic and mobile than their parent compounds. However, the behavior and fate of OH-PCBs have been neglected in the environment because they are not the original contaminants. Some of these hydroxylated metabolites are chiral, and chiral compounds can be used to probe biological metabolic processes. Therefore, chiral OH-PCBs were selected to study their uptake, translocation, transformation, and enantioselectivity in plants in this work. Poplars (Populus deltoides × nigra, DN34), a model plant with complete genomic sequence, were hydroponically exposed to 5-hydroxy-2,2',3,4',6-pentachlorobiphenyl (5-OH-PCB91) and 5-hydroxy-2,2',3,5',6-pentachlorobiphenyl (5-OH-PCB95) for 10 days. Chiral 5-OH-PCB91 and 5-OH-PCB95 were clearly shown to be sorbed, taken up, and translocated in whole poplars, and they were detected in various tissues of whole poplars. However, the enantioselectivity of poplar for 5-OH-PCB91 and 5-OH-PCB95 proved to be quite different. The second-eluting enantiomer of OH-PCB95, separated on a chiral column (Phenomenex Lux Cellulose-1), was enantioselectively removed in whole poplar. Enantiomeric fractions in the middle xylem, top bark, top xylem, and stem, reached 0.803 ± 0.022, 0.643 ± 0.110, 0.835 ± 0.087, and 0.830 ± 0.029, respectively. Therefore, 5-OH-PCB95 was significantly enantioselectively biotransformed inside poplar tissues, in contrast to nearly racemic mixtures of 5-OH-PCB95 remaining in hydroponic solutions. Unlike 5-OH-PCB95, 5-OH-PCB91 remained nearly racemic in most tissues of whole poplars during 10 day exposure, suggesting the enantiomers of 5-OH-PCB91 were equally transported and metabolized in whole poplars. This is the first evidence of enantioselectivity of chiral OH-PCBs and suggests that poplars can enantioselectively biotransform at least one chiral OH-PCB: namely, 5-OH-PCB95. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhai</LastName>
<ForeName>Guangshu</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department of Civil and Environmental Engineering and IIHR Hydroscience and Engineering, The University of Iowa , Iowa City, Iowa 52242, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gutowski</LastName>
<ForeName>Sarah M</ForeName>
<Initials>SM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lehmler</LastName>
<ForeName>Hans-Joachim</ForeName>
<Initials>HJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schnoor</LastName>
<ForeName>Jerald L</ForeName>
<Initials>JL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P30 ES005605</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P42 ES013661</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P42ES013661</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>10</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Environ Sci Technol</MedlineTA>
<NlmUniqueID>0213155</NlmUniqueID>
<ISSNLinking>0013-936X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0YO8J06WCR</RegistryNumber>
<NameOfSubstance UI="C032904">2,2',3,5',6-pentachlorobiphenyl</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>DFC2HB4I0K</RegistryNumber>
<NameOfSubstance UI="D011078">Polychlorinated Biphenyls</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001711" MajorTopicYN="N">Biotransformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018527" MajorTopicYN="N">Hydroponics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006900" MajorTopicYN="N">Hydroxylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018526" MajorTopicYN="N">Plant Transpiration</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011078" MajorTopicYN="N">Polychlorinated Biphenyls</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013237" MajorTopicYN="N">Stereoisomerism</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>9</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>9</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>12</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25238141</ArticleId>
<ArticleId IdType="doi">10.1021/es503443e</ArticleId>
<ArticleId IdType="pmc">PMC4207536</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Chemosphere. 2009 Jan;74(3):404-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19022474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Pollut Res Int. 2014 May;21(10):6334-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23636595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2010 May 15;44(10):3901-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20402517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Environ Contam Toxicol. 2014 Oct;67(3):348-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24859045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2013 Jan 2;47(1):557-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23215248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2010 Apr 15;44(8):2822-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19957996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2001 Jun 15;35(12):2448-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11432547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2001 Dec;45(8):1119-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11695625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1979 Nov 28;91(2):475-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">42397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Environ Contam Toxicol. 2009 Jan;56(1):111-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18414928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Lett. 2006 Jul 1;164(2):113-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16412591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Toxicol Pharmacol. 2008 Mar;25(2):260-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18438460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2011 Nov 15;45(22):9590-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21966948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Res Toxicol. 2006 Nov;19(11):1420-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17112228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Res. 2003 Oct;93(2):167-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12963401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2012 Oct 16;46(20):11393-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22974126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2013 Apr 2;47(7):3353-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23452180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol Interact. 2006 Feb 25;159(3):235-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16413005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2002 Apr 1;36(7):1419-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11999046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2009 Feb;74(7):950-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19054541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2013 Aug 6;47(15):8204-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23862721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2010 Apr 15;44(8):2757-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20384371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2009 Oct 1;43(19):7503-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19848168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacogenetics. 1994 Oct;4(5):225-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7894495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2006 May;63(8):1368-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16289232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Environ Contam Toxicol. 2000 Feb;38(2):217-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10629285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2008 Nov;73(10):1608-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18793792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol Interact. 2014 Apr 5;212:56-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24508592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Toxicol. 1994;24(2):87-149</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8037844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurotoxicology. 2003 Mar;24(2):187-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12606291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aquat Toxicol. 2011 Oct;105(3-4):482-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21888873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Metab Dispos. 2009 May;37(5):1065-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19196841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Toxicol Chem. 2001 Feb;20(2):389-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11351440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Health Perspect. 1997 Jun;105(6):644-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9288499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Cent J. 2013 Dec 22;7(1):183</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24360245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Sci. 2013 Dec;136(2):500-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24014653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2007 Mar 15;41(6):1841-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17410773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bull Environ Contam Toxicol. 1979 Dec;23(6):788-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">117862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Health Perspect. 2009 Oct;117(10):1600-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20019912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2011 Mar 15;45(6):2308-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21329345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Res. 2007 Oct;105(2):240-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17490634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Environ Contam Toxicol. 1991 Jan;20(1):87-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1899993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2004 Mar 15;38(6):1662-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15074672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Toxicol. 2010 May;30(4):334-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19924679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Res Toxicol. 2012 Dec 17;25(12):2796-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23137097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Toxicol Chem. 2005 Nov;24(11):2763-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16398111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2014 Nov;114:1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25113177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2001 Jan 1;35(1):33-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11352023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2008 Oct 1;42(19):7181-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18939544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Sci Technol. 2008 Aug 1;42(15):5746-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18754503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Res Toxicol. 1995 Jan-Feb;8(1):92-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7703372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Reprod Toxicol. 2005 May-Jun;20(1):57-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15808786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1995 Mar 10;317(2):464-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7893164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2003 Jan 1;409(1):59-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12464245</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Gutowski, Sarah M" sort="Gutowski, Sarah M" uniqKey="Gutowski S" first="Sarah M" last="Gutowski">Sarah M. Gutowski</name>
<name sortKey="Lehmler, Hans Joachim" sort="Lehmler, Hans Joachim" uniqKey="Lehmler H" first="Hans-Joachim" last="Lehmler">Hans-Joachim Lehmler</name>
<name sortKey="Schnoor, Jerald L" sort="Schnoor, Jerald L" uniqKey="Schnoor J" first="Jerald L" last="Schnoor">Jerald L. Schnoor</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Zhai, Guangshu" sort="Zhai, Guangshu" uniqKey="Zhai G" first="Guangshu" last="Zhai">Guangshu Zhai</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002255 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002255 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25238141
   |texte=   Enantioselective transport and biotransformation of chiral hydroxylated metabolites of polychlorinated biphenyls in whole poplar plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25238141" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020